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Stationary solutions and self-trapping in discrete quadratic nonlinear systems

Ole Bang
Australian Photonics Cooperative Research Center, Research School of Physical Sciences and Engineering,
Optical Sciences Centre, Australian National University, Canberra, Australian Capital Territory 0200, Australia

Peter Leth Christiansen and Carl Balslev Clausen
Department of Mathematical Modelling, Technical University of Denmark, DK 2800 Lyngby, Denmark
(Received 21 July 1997

We consider the simplest equations describing coupled quadratic nonlip€dy $ystems, which each
consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply,
e.g., to optics, where they can describe arraygéf waveguides, and to solid state physics, where they can
describe nonlinear interface waves under the conditions of Fermi resonance of the adjacent crystals. Focusing
on the monomer and dimer we discuss their Hamiltonian structure and find all stationary solutions and their
stability properties. In one limit the nonintegrable dimer reduce to the discrete nonlineadi@gergdDNLS)
equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the
two systems correspond to each other and how the self-trapped DNLS solutions gradually develop
chaotic dynamics in thg(® system, when going away from the near integrable limit.
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PACS numbsgfs): 63.20.Ry, 63.20.Pw, 42.65.Wi, 42.65.Sf

[. INTRODUCTION Jnm'S, Whereas only nearest neighbor coupling (s taken
into account in the DNLS equation. Besides condensed mat-
Coupled nonlinear ordinary differential equations ter physics the DNLS equation is also widely used in non-
(ODE'’s) are used in the description of many physical prob-linear optics, where it can describe wave propagation in ar-
lems. Such sets of equations can describe the dynamics mays of cubic nonlinear waveguidd8—10. In that case
inherently discrete systems, such as coupled anharmonic 0®¥,(§) represents the slowly varying envelope of a weakly
cillators or molecules in condensed matter physics, or wavemodulated carrier wave.
guide arrays in nonlinear optics. They can also be viewed as The DNLS equation is generic and represents the simplest
a discretization of a corresponding continuous “field” equa-possible model for coupled cubic nonlinear oscillators with

tion. only a single frequency. Here we will consider the simplest
One of the most studied systems of coupled nonlineamodel for coupled quadratic nonlinear oscillators, each with
ODE's is the discrete self-trappin@ST) equation[1], two frequencies, a fundamental() and a second harmonic
(Vn), close to resonance
i W —
198Vt 20 (JnnWon) + [Wo["Wh=0, (LD W 7(Wo 1+ Wo ) TWEV, =0, (L3)
where¢ is the evolution coordinate, ant=[1,n,], with n, 10Vt 17,(Vns1+Vao1) —aV,+Wa2=0, (1.9

being the total number of sites. Classically the DST equation

describes the dynamics of, linearly coupled anharmonic Where»,, (7,) determines the strength of the coupling be-
oscillators with complex mode amplituded/,(£). The tween fieldsW, (V,) at neighboring sites. The phase mis-
strength of the coupling between sitesandm is given by ~ matcha determines how far the two fields are from reso-
J.m. The DST equation describes a variety of effects in connance. The systerfl.3-1.4 is used in solid state physics to
densed matter physics, such as polaf@sexcitons in mo- describe nonlinear interface waves between two media close
lecular chains[3], stretching vibrations of the hydrogen to Fermi resonancgl1,12, and in optics to describe arrays
bonds in small polyatomic molecules such as water, ammoPf quadratic nonlinear waveguid¢3]. For only one site,
nia, methane, and benzef], self-trapping of vibrational Ne=1, Egs.(1.3-1.4 reduce to simple second harmonic gen-
energy in hydrogen bonded polypeptide crystals such as a€ration, which is one of the earliest and most well-studied
etanilide[5] and N-methylacetamid¢6], and globular pro- €ffects in nonlinear opticklL4].

tein [7]. Studying the systenl.3-1.9 is important, not only in
The DST equation is a generalization of the discrete nonterms of fundamental physics, but also from a technological
linear Schrdinger (DNLS) equation point of view. In optics the DNLS equation is the simplest
model for beam propagation in arrays of cutie x*)) non-
19 W+ p(Wh 41+ Wph_1)+|W,[?°W,=0, (1.2 linear waveguides with a centrosymmetric crystal structure

[9]. One of the most interesting effects of the cubic nonlin-
the difference being that the DST equation takes into accourgarity is that the index of refraction becomes dependent on
arbitrary linear coupling between all the sites through thethe intensity. This is known as the Kerr effect and leads to
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self-action processes, such as self-phase modulation and sedixist, that at low amplitude can move through the lattice and
trapping(or self-focusing in continuum mediavhich can be either fuse, annihilate, or pass through each other when col-
used in all optical signal processifig5]. However, in con- liding [13]. In contrast to the DNLS equation, whose con-
ventional materials the third order Kerr nonlinearity is weaktinuum limit is integrable, these collision properties are also
and relatively slow(see[15] for a review. By using the found in the nonintegrable continuum limit of Eq4.3-1.4
generally stronger and faster second order quadatig ) [26].
nonlinearity in noncentrosymmetric materials instead, these Even for the more conventional cubic nonlinear
obstacles can be overcome. waveguides, the largest array fabricated to date consists of
It is now well known that quadratic materials have effec-only 11 waveguidef27]. In the context of nonlinear optics it
tive cubic properties, such as an intensity dependent refragherefore seems most appropriate to study systems with only
tive index and self-phase modulation. The physical mechag few sites. Here we consider the coupler, or so-called dimer,
nism behind these effects is known as cascading, because t{jgnh ny=2, which has not yet been analyzed in detail. The
fundamental and second harmonic wave components interaS%KZ) dimer is nonintegrable, but in the limit of a large phase
with themselves through rgpeateq up and down_convers.ionismatChJa|>1, it reduces to the DNLS dimer, which is
(see[16] for a comprehensive review on cascading and it§piegrable[1]. Thus it is naturally to compare the properties
application to all-optical signal processinglowever, it is  of the two systems, which we do throughout the paper. In
only in certain limits that the cascading nonlinearity can beygst cases no analytical forms for solutions of E¢js3-
treated as an effective cubic nonlinearity. Generally yffé 1.4), or the DST or DNLS equations, are known. However,
materials display a much richer variety of phenomena thamnere are a physically important subclass of solutions that can
can be found iny® materials[16]. As we will briefly show, pe easily classified and often expressed in a simple form.
the simplest model for beam propagation in arrays of quaThese are the stationary solutions, which we therefore focus
dratic nonlinear waveguides is given by E¢5.3-1.4. Thus  on in the comparison. We consider the system from the point
it is important to understand the properties of the systempf view of optics and thus we will talk about cw beams,
(13-14, in order to be able to fU”y utilize the potential of enve|0pe functionS, and WaveguideS, etc.
quadratic nonlinearity. In Sec. Il we heuristically derive the model and give its
Furthermore, the systeifi.3-1.4 is important from the  main features, such as conserved quantities, Hamiltonian
context of being the simplest discretization of the continuumsgrycture, and symmetries. In Secs. Ill A and Ill B we briefly
equations. In the continuum limit E¢L.1) becomes the one- consider the stationary solutions and fixed points of the
dimensional1D) NLS equation, which is integrable and has monomern,=1. These are of course known from the theory
stable soliton solutiongl7]. In higher dimensions the soli- of second harmonic generatiph4], but we will need them,
tary wave solutions to the NLS equation are unstable and cagince in certain cases the dimer can be reduced to the mono-
collapse in finite time(see[18] for a general revieWw In  mer. Furthermore, in Sec. Ill C, we discuss the Hamiltonian
contrast the continuum counterpart to Eq$.3-1.4 has  structure of the monomer, and show how it can be written as
stable solitary wave solutions in all dimensions of physicaly compact s(2) algebra, in a similar way as for the DST
interest{19—21], and regardless of the initial wave function, equation[28]. The dimer is treated in Sec. IV. In particular
a catastrophic collapse can never occ8]. Due to the na- e find all the stationary solutions analytically and analyze
ture of the cascaded nonlinearity, the solitary waves in quatheir stability properties in Sec. IV A. In Sec. IV B we then
dratic materials differ from the NLS Soliton, in that they have consider their self-trapping propertieS, and how they are con-
two components, the fundamental wave and its second hafrected to the stationary solutions of the DNLS dimer when
monic. Experimentally, two-component solitary waves have 4|s-1. Since the DNLS dimer is integrable, we can talk
been observed in both 2[22] and 1D[23]. _ _ about a near-integrable limit of thg¢?) dimer. An interesting
Since quadratic materials have effective cubic pmpert'eﬁuestion is then how the stationary DNLS solutions, when
there is obviously a connection between the two kinds of,qaq as initial conditions in thg® system, will develop
nonlinearities. Indeed it is possible to derive an NLS equagynamics when going away from this limit. This is also con-

tion for the fundamental wave in quadratic materials, usinGsjgered in Sec. IV B. where we show how a gradual transi-
perturbation techniquef24]. The connection may also be fjon 1o chaos occurs. Finally, we discuss the Hamiltonian

seen directly from the discrete Eqd.3-1.9 by assuming  gqrycture in Sec. IV C, and finish with a conclusion in Sec.

that the phase mismatch is larde)/>1, while the deriva-

tives of V,, remain finite. In that case the second harmonic  ggfgre proceeding, we would like to draw attention to a

field is weak and slaved to the fundamentdl~W;/(2a),  recent paper by Dubovskii and Orldid2], in which they

with W, being determined by the DNLS equation. analytically find stationary solutions of Eqél.3-1.4 for
The properties of the continuum equations corresponding,=2, 4, and 6. However, they consider only real solutions,

to Egs.(1.3-1.4 are well known; it has a continuous one- and do not analyze stability. This means thatrige=2, they

parameter family of bright solitary wave solutiof&5],  only find two of the all in all seven different classes of so-
which is stable, except for only a narrow region in parametefytions that we find here.

spaceg 21]. A lot less is known about the discrete E@.3-
1.4). The main work has been done in the context of Fermi

resonance interface wavgsl1,12, with only a single work Il. THE MODEL
published in nonlinear optidsl3]. In general the focus has '
been on systems with many sitag,§ 1), in which localized Neglecting spatial walk-off, the dimensionless equations

self-trapped states of different topology have been found tdor cw beams in a lossless waveguide are the same as for
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8 Q H=§ [@|Vo|2=WE (Wi 1+ Wy 1) = 7VE (Vs 1+ Vi)

. _ — Re[WAV*1]. (2.6
FIG. 1. Schematic diagram of part of an array of waveguides of

lengthL. The width of each waveguide & and the spacing be-

C It is Hamiltonian with the conjugate variablesV(,iwW})
tween waveguides id.

and (V,,iV}y) and can be written in the standard forw,, =

second harmonic generatiph4], dHIOW?* | iV ,=dH/aV* . Furthermore, it is invariant under
_ _ the transformation
i,V XYW Ve 1F2=0, (0, V+2xW?e'F?=0, , ,
Wa(O)—=Wia(De,  Va(H)—Va(0e??, (2.7
where the complex functiong/(z) and V(z) are the low- i , .
amplitude, slowly varying envelopes of the fundamentalvhere is an grbﬂrary constant phase. Thls wlll be useful
wave and its second harmonic, respectively. The parameté‘Yhe” considering stationary s_olutlons, since it allows us to
B is proportional to the phase mismatatk=2k; —k,, o= assume that one of the fields is real and positive.
k,/k,~2 is the ratio between the wave numbers, grid the
normalized appropriate component of th&) susceptibility. ll. ONE WAVEGUIDE — THE MONOMER

The mode structure in the transversey plane is deter- In this section we consider a single waveguide, corre-

mined separatelsee, e.g.[29)). sponding to simply second harmonic generatidm,30.

Let us now consider an array of, identical regularly  rhen Egs(2.3-2.9 reduce to the system of two equations
spaced quadratic nonlinear wave guides, as depicted in Fig.

1. Assume the distance between waveguidedp be large Wt WEVa=0. iV —aV.+W2/2=0 3.1
enough to allow the field in each waveguide to be treated O A Tt o G
almost as though in isolation. By almost we mean tat \yhich s integrable and can be compared to the integrable
should still be sufficiently small to allow the evanescent fieldpsT dimer (same number of degrees of freedoft]. We
tails in neighboring waveguides to overlap just enough torst map the regions of existence and stability of all station-
create a small linear couplingower leakage Under these  ary solutions to Eqs(3.1) (Sec. IIl A). Then we reduce the
assumptions, to lowest order, the stationary envelope of thggyations to the simplest possible Hamiltonian system of 2
electric field in thenth waveguide is governed by the equa- gegrees of freedom, and characterize the fixed points and
tions dynamical behavior(Sec. Il B). Finally we discuss the

. v, amipz Hamiltonian structure of the equations in Sec. Il C and show

10 Wat pWar 1t Whot) £ XWiVee '72=0, (2.1)  how they can be written in terms of Feynman variables that

. satisfy a compact $8) algebra, in a similar way as for the
i 00Vt 0k(Var1+ Vao1) +2xW2€F?=0, (2.2  DST equatior{28].

wheren=[1,ng], and p and x determine the coupling be- A. Stationary solutions
tween adjacent waveguides for the fundamental and second
harmonic, respectively.
In order to write the equations in a convenient dimension- Wa(Z)= iNg a2\
Lo . =wq.e'", VvV =v1€"°, 3.2
less Hamiltonian form, we apply the transformation 1()=w, 1=vs 32

wn<z>=(g)wn(o, vn<z>=(

The stationary solutions are defined as

where the eigenvalua is real. The amplitudev, can be
assumed to be real and non-negative, because of the scaling
property given by Eq(2.7). Inserting Eq.(3.2) into Egs.

(3.1) we find two nonzero solutions. The solution

p

iBz
X Vn({)e'",

where{=pz. This reduces Eqg2.1-2.9 to

() wy;=0, |v4]?=NI2 (3.3
Wit (Wheat Wo—1) +Wo Vo =0, 23 exists at\ = — /2, whereas the solution
Vot 7(Vos1+Voo1) —aVy+WH2=0, (2.4 () wi=2\(a+2)\), vi=\ (3.9

where the dot denotes differentiation with respecttdVe  exists forh <min{0,— @/2} andA>maxX0,— «/2}. The zero
have assumed here tha# 0, in order to reduce the number solutionw,=v,=0 exists for all\, but here and in the fol-
of parameters in the model to two: the relative couplinglowing we will not consider this solution.

strength n=«/p, and the normalized phase mismatek We have depicted the solutiorily and (ll) in Figs. 2a)
Blp. The systen{2.3-2.4 conserves the noriN (dimension- and 2Zb). From Fig. 2a) we see that except at exact phase
less power and the HamiltoniarH: matching,a=0, there is a gap in the eigenvalue spectrum, in
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FIG. 2. (8 Norm N as function of the eigenvaluk for the . . .
stationary solutiongl) and (Il), given by Egs.(3.3-3.4, with the FIG. 3. (a) Regions of the ki, «) plane forN=1, in which the
phase-mismatch parameter-0. For a<0 the curves are reversed CUPIC equatiorP(y)=0, with P(y) given by Eq.(3.11), has 1 real
around the vertical axis. (b) The dependence af on \ for N=1. root (white), and 3 real rootéshadedl On the solid lines 2 of the 3

Linearly stable(unstablé solutions are indicated by a solidotteg €@l roots are equal and at the points all 3 roots are equal. The
line. darker shaded region indicates the physically valid regiimeThe

potential P(y) for the 3 solid lines in(@), with «=0.4. The points
ndicate the fixed point solution@)—(C), given by Eqs(3.9).

which nonzero solutions do not exist. Such a gap is not
found in the corresponding DST dimer, where there is a
threshold insteafil]. Linear stability analysis shows that the (A) ye=NI2,

solution(l) is stable forN< «?/2, but unstable foN> &?/2, (B) cog60)=+1, \ye=(Ja?+6N—a)l6,

while the solution(ll) is stable in the whole domain of exis- _ P e
tence. From Fig. @) we see that at fixed norii=1 the (C) cogf)=—1, \Ye=(Va®+6N+a)/6, (3.9

solution (Il) bifurcates continuously into the stable part of \yhere solution(A) exist for all @, while (B) and (C) exists

the solution(l) at a®=4\?=2. Thus we have a stable sta- ¢, ,~ V2N anda< 2N, respectively. The solutior(@)

tionary solution for alla. and (B) correspond to the stationary solutiofi$ and (I),

respectively(thus the stationary solutions are only a special

B. Fixed points and dynamical solutions branch of the fixed point solutiopnsAccordingly, we find

that the solution(A) is linearly stable forla|= 2N, and

unstable fora|< 2N, while the solutiongB) and (C) are

Wi(0)=X(0)e?D, V() =\y(0)e"d, (3.5  stableinthe whole domain of existence. The fixed points and

their linear stability properties were found by Trillet al,

who studied second harmonic generation using phase-plane

: - methods[30]. Here we will give a brief description of the
and the phases andy are real. Inserting Eq3.5) into Egs. r§1nalytical solution to the monomer. This will be useful for

(3.1, and separating the real and imaginary parts, it is thethe discussion in Sec. IV, where we show that for certain

straightforward to derive the Hamiltonian system of two con—initi | conditions the dimer red to the monomer
jugate degrees of freedom: al co ons the er reduces 1o the monomer.

Equations(3.6-3.7 can be reduced to a single equation
for the fraction of power in the second harmony¢(),

Let us introduce polar coordinates,

where the intensities=N—2y andy are real and positive,

=~ (N=2y)\ysin(0) = — 39
= — — | = - —_— . -
Y= (T2 SINO= =5, y2+P(y) =0, (310
which is equivalent to the dynamical equation for a classical
b= a+ y— cog 6)= ﬁ 3.7 particle moving in a potentiaP(y). The potentialP(y) is a
2\ly ay’ ' cubic polynomium,
P(y)=—4y3*+ (a?+4N)y?—(2aH +N?)y + H?.
where () =2¢({) — ¢(¢) andH is given by v) y{a Wy~ (2a Y (3.11)
H=ay—(N—2y)\ycog ). (3.8  InFig. 3@ we depict the number of real roots of the cubic

equationP =0 in the H,a) plane, which is simply given by

Equations(3.6-3.7 assume thay+#0 andy# N/2, and are the sign of the discriminant
therefore not physically valid in these limits, where the origi- —(H_ 2042 _
nal Egs.(3.1) must be applied instead. D=(H—-aN/2)%(H*—d;H—d,)/64, (3.12
Now let us look at the fixed pointsy(6) =(Ye.fe), for  whered,=N?(a?+8N)/108 andd,=a(a?+9N)/27. Thus
which y=6=0. From Eq.(3.6) we see that there can be 4 P=0 has 1 real root foD>0 (white region$ and 3 real
such solutions, for whicly,=0, y.=N/2, and cosf;)==*=1, roots forD=<0 (shaded regionswith at least two of them
respectively. Equation$§3.1) give that the limity,=0 can being equal forD=0 (solid lineg. On the solid linesH
never be a fixed point, whilg,=N/2 always is a valid fixed equals that of the fixed-point solutiof&), (B), and(C). The
point, since we can choose the phag€z) arbitrarily. In  dark shaded region indicates the physically valid regime, in
contrast, Eq.(3.7) gives unphysically thay,=N/2 is only  which H(a) can be obtained for9y<N/2 and|cos@)|<1.
valid for |a|<2 and cosf)=—a/\2N. The physically At the two points H,a)=+(1/1/2,\2) there is a triple real
valid fixed points are therefore root.
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The potentialP(y) is shown in Fig. &) for «=0.4 andH whereC acts as the Casimir element. Because of the sym-
on the 3 solid linesfixed points(A), (B), and(C)]. From the  metric group structure, the conjugate variables,
particle analogy we can clearly identify the fixed points and{r;,p;}=1, are given by
their stability[(A) is unstable(B) and(C) are stablé

In the physical region of theH,«) plane, the general pi=arctarir,/r3), pp=arctars/ry),
solutiony(¢) to EqQ.(3.10 is a periodic function determined (3.17
by the three real rootsy,;<y,<y3;<N/2,

Y(O=Y1+ (Vo= y0ST(VYs=yi[{+{ol.K), (313 For Egs.(3.1) the algebrd3.16) can be realized by the Feyn-

which oscillates between the two lowest rogts andy,. ~ Man variables
Here sn(,k) is the Jacobi elliptic function with modulus et
k?=(y,—Yy1)/(ys—Y1). This solution, where?, is deter- r1=v2|Vy|Re{Wy ‘/V_l}'
mined by the initial condition, was first found and studied by
Armstronget al. [14]. ro=2[Va[Im{W} WV},
On the lineH=aN/2, the two largest roots are identical to (3.18
the fixed point(A), y3=y,=N/2 (k?=1), andy,=a?/4. In Fa= ((W[2= 2|V [2)12
this case the period goes to infinity and the solutidrid 3 1 o 7res

pz=arctarir,/r,).

reduces to C=(wil?+2)vyfAr2,
y({)= %a2+ %(2N— a?)tanit %\/ZN— [+ o] in terms of which the Hamiltonian may be written as

H=a(C—r3)/2+(r5—r3)/\/C—rs. 3.1
This solution was first studied if31]. It is of significant a(Crg)f2+(rp=ry) 3 (3.19

physical importance, since it predicts that total transfer ofrhe Casimir element is proportional to the nor@=N/2,
p;)f:/ver to tt|1e second harmon%f Nt/2)th|s F)osslbleéln tge and therefore a constant of motidh,={C,H}=0. Thus the
other simple cases, corresponding to the fixed pdiisan monomer(3.1) has a simple @) group structure, closely

(C), the .twollowest roots are identical, =y, (k=0), .and related to its integrability. The integrable DST dimer has a
the solution is a con_stary(g) =y(0).. Thus no conversion to similar structurg28].
the second harmonic can be obtained. The system is considerably simplified if we introduce po-
lar coordinates as in Eq3.4):
C. The Hamiltonian structure

The quadratic monoméB.1) has four degrees of freedom W, (&)= yx(Z)elod+aons
(amplitude and phase &f,; andV,). Since it has two con- (3.20
served quantities and consists of two equations, it is com- Vi(0)=y(0)elod-a012,
pletely integrable. Its solution in terms of the powein the
second harmonic is well knowfi4] and has been reviewed
in Sec. Il B. In this section we give the Hamiltonian struc-
ture and underlying symmetry. From this the full solution,
including the individual phases, can be found systematicall

For one waveguide the Hamiltoni¢8.6) reduces to

where we have written the phases in terms of the sum

(2¢+¢)/2 and the difference 6=(2¢— ¢)/2. Since

{C,0}=1 we see thatr has no influence on the dynamics of

Ythe other variables, and thus is an ignorable coordinate, as

we would expect from the calculations in Sec. Il B, where
H=a|V,|>— ReJWAV* 1, (3.14 only =26 appears in E_qs(3_.6-3.‘0. In polar coordinates

the Feynman variables simplify to

where W; and V; satisfy the Poisson structure _

{W,,iwsl=1, {V;,iV¥}=1, with the Poisson brackets be- r1=\2Xxy co89), rp=—v2xy sin(9),

ing defined as (3.21

2 rs=(x—2y)/2, C=(x+2y)/2,

No
dga db db da
a,b}=—i B '
{a,b; nZl ,Zl Ibin agt,  IPin 9},

(3.19

where § is the conjugate variable af, {r3,5}=1.
Introducing a new evolution coordinaté=rr,d{ the

where ¢1,=W, and ¢2,=V,. Thus (W;,iWI) and  dynamical equations;={r;,H} become

(V1,iVY) are Hamiltonian conjugate variables. Using the

Poisson structure, the equations of mot{8rl) can be writ- ;o +3a _ H o 2
. i =+ 7 A/
ten asW; ={W, ,H} andV,;={V,,H}. 12774 "2(C—rgy)  *NC-—ryg
Consider the compact &) algebra (3.22
{rorat=ra, A{rarsp=ry, {ra.raf=ry, ry=—2v2[(C-rjy),
(3.1

_ s o o where a prime denotes differentiation with respect to the new
{Cr}=0, j=123, C=ri+ry+rs, coordinate ¢. Integrating the equation for; and subse-
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quently the equationszf/grrl andr,, we obtain Eqs(3.6-3.7, (N wp=0, |vq|?2+]|vy/2=N/2 for =X\,

wherey=[3(&—&,)/3]7"", &, being an integration constant. _
Theyd)/[nza(iicg?)eq]uatiggs fa? %nd for tge ignorable co- () wo==wy, vp=A+1 fora=r_, 7#0,

ordinate o are obtained a$={5,H} and o={co H}, thus (1) Wo==Ziwy, vi=AFi, vo=—\FI

yielding the dynamics of the individual phas¢sand. This forA\=N,, 7#0, (4.9

is of crucial importance for, e.g., Mach-Zehnder interferom-

eters, but it is only recently that this calculation has beeRynerew, =/N/2—2[v,[? in solutions(ll) and (1l ). The so-

carried out in detai[32], without considering the Hamil- |ution (1) is equivalent to that for the monomer. FDr#0

tonian s@2) structure though. Eq. (4.5 gives the second harmonic

IV. TWO WAVEGUIDES — THE DIMER vp=[(a+2N)Wi+ nw5_1/(2D), 4.7

We now consider two waveguides and thus the system . :

(2.3-2.4 reduces to the four coupled equations in terms of the fundamental. In this case there exist four
classes of solutions. Whems=w3 the solution is

W, +W;_y+ WXV, =0, (4.2)

(IV) wy,=xw;=*=JANF1)(A—\,),

N =A*1 for D#0, (AF1)(A—A,)>0.
iV + Ve n— oV, +W22=0, n=12, (4.2 vn=h+1 for AFDA=As) .9
which are not integrable, just as the DST equation for fou
sites[1]. However, we can still find all stationary solutions
analytically and check their stability, which we do in Sec.
IV A. We find 7 different classes of solutions, two of which

rWhenw2 is allowed to be complex, andv,|?=w3, the fun-
damental fields are found to

have been found beforfd 2], however, without considering (V) wy=vaN(N—No),

the stability and the ger_leral scaling invariance given by Eqgs. W,=—D/(pwq) i /Wf— D2/(pwy)2

(2.7). In Sec. IV B we discuss the self-trapping properties of

the stationary solutions. In particular we show how the sta- for D#0, AA—-N_)>0, 2#0,

tionary solutions are simply connected to the known station- 7°N2>(N—\1)2, (4.9

ary solutions of the DST dimer in the limfity|>1. Further-

more, we use the Self-trapped DST Stationary solutions a§l|th Un being given by Eq(47) In the genera| case when

initial condition in the full quadratic system, and show how |y,|2 w2, there are two solutions, for which the fundamen-

their dynamics gradually becomes more chaoticl@sis 55 gre given by

decreased. Finally we discuss the Hamiltonian structure of

the equations in Sec. IV C and show how they can be re- _ _ _

duced to a Hamiltonian system of six degrees of freedom. (VD) wo=4( =N )hwy, wi=Xy or \x;
for D#0, \#—al2, b<-2\c, (4.10

A. Stationary solutions

. . . wherex,, are the two roots of the quadratic equation
In analogy with the monomer we consider stationary so-

lutions of the form X2+ bx+c=0,

Wa(§)=wae™,  Vn(§)=v,e'?¢, (4.3
b=—2AD/(a+2\), c=16A—\_)% (4.1))
where\ is real andw, is real and non-negative. All solutions

with w; complex may be obtained from the phase rotationandy , is given by Eq(4.7). Finally, in the special case when

invariance given by Eq(2.7). For two waveguides Eqé2.3- )\ = — 4/2 and|w,|2#w?2, the solution is
2.4) then reduce to

N =1 wyg Wivg (Vi) W2=%, v1=—2—727, v2=—¥
-1 N ||wy| T | Whual 4.9 1 Wi Y
for D#0, A=a=0, w;#0, #»#0, (4.12
at2h  —7n ||lvg w2 wherew; can be found fromN. In the following we will
—n  at2\||vy|T| wir2|- (4.5  denote the solutiondV), (V), and(VI) as general solutions,
because they exist in a certain intervalNpwhile the solu-

tions (1), (1), (1l1), and(VII') are termed particular solutions,
Here Eq.(4.5 can be considered as a linear inhomogeneoubecause they only exist for discrete values\of
set of equations, with the determindt&=4 (A =N )(A—\_), Due to the scaling invariance, given by E8.7), each of
where\.=(—a=* 7)/2. ForD=0 there exist three qualita- the classe$l)—(VIl) correspond to infinitely many solutions.
tively different solutions The symmetriqlV) , and antisymmetri¢lV) _ solutions, as
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150 4
120F,
Unstable
90 z
p=4
60
Stable
30 0 ‘ ‘
00 02 04 06 08 10
0 2V F/N
FIG. 5. NormN vs normalized power [2,]%/N for the station-
35 ary solution (1) at A=A, (solid) and A=\_ (dasheg, with
n=2a=2. In the regime belowabove the curve the solution is
<8 linearly stable(unstablg.
21 _ _
= L Of particular interest are the self-trapped states, where the
14K norm is primarily concentrated in one of the degrees of free-
. dom. Here we will consider trapping in terms of whether the

norm is concentrated in one of the two waveguidés,N,=
‘ |Wn|2+2|vn|2-
-2 2 In Fig. 6 we therefore depict the ratid, /N, of the norm
in the two waveguides, for the stationary solutighs-(VIl).
FIG. 4. NormN as a function of the eigenvalue for the sta- Th_e parameters are the_ same as In Figs. 4 ang=5 ar_1d
tionary solutions(l1)—(VII), with p=2a=2. Linearly stable(un- a=1, and thus the particular S(.)Iundhl”) does not exist.
: We see that of the general solutiaitg), (V), and(VI), only

stablg solutions are indicated by a solidotted line and the curves h uti f hich 2 >
are labeled with the solution they represent. The dashed line indit- e solution(V1), for whic |W1| 7 |W2| , can correspond to

cates that théll) . [(Il )] solution is unstabléstable. The bottom @ Self-trapped state, with eithéd;~N or No~N. Of the
figure shows a closeup for small. particular solutiongl), (I1), (11), and(VIl ), only the solution
(I) can represent a self-trapped state. Note that with this rep-
well as the(VI) solution, were also found by Dubovskii and "esentation the two degeneratel) solutions, (V1) . and
Orlov [12]. However, the issue of stability was not consid- (V) -, can be clearly distinguished. _
ered, and only the sign degeneracy of the fundaméitat Let us consider the limit wherfx|— o, while bothV,
m in Eq. (2.7)] was taken into account. and the coupling parametey remain finite. Eqs(4.1-4.2
In Fig. 4 we show the norm\ as a function of the soliton can then be reduced to
eigenvalue\ for the solutiongll)—(VII). As a representative .
example we have useg=2a=2, for which solution(VIl) iW,+W;_n+y|Wo[*W,=0, n=12 (413
does not exist. Stableinstablé solutions are indicated by a
solid (dotted line. The solutiongll), (Ill), (V), and(VI) all . :
have(tvvo ?jegenerate branchs{es), (vvh)icr(1 )cannoi b)e distivhere the nonlinearity paragnetmtl/(Za) and the second
guished by thisN(\) diagram. In Fig. 4 these pair of solu- N&rmonic is given by/,=yW;,. The expressions for the gen-
tions all have the same stability properties, except for théral solutions(IV) and(V1) in this limit, vyher.e|-a|>|)\| and
solution(ll), for which the component with the pldminus |a|>| 7], are given in Table |, from which it is clearly seen
sign is unstablgstable for N>25, and does not exist for that_ t_he solutions VI correspond to a self-trapped state for
lower values ofN. sufficiently large values of\|. All other solutions do not
The solution(1) is special, since for each value of the €Xist in this limit.
norm, there exist infinitely many subbranches of solutions,
whose stability properties vary with the relative sizewf|?
and |v,|%. In Fig. 5 we show the stability regimes of the
solution(l) as a function of &,|?/Ne[0,1] for p=2a=2,
as in Fig. 4. The curve that separates the stable and unstable
regimes is shown as a solid line for the branch at\ | and
a dashed line for the branch)t=\ _ . For both branches the
solution is unstable if it has a large value of the norm, but
becomes stable for sufficiently small values of the norm.

Ny /Ny

B. Self-trapping and the DST limit . . .
FIG. 6. Ratio of the norm in the two waveguidehl,=

The dynamical equation@.1-4.2 for 2 waveguides are |w,|2+2|V,|?, vs the eigenvalua for »=2a=2. Linearly stable
nonintegrable, and consequently the dynamics may be ch@unstabl¢ solutions are indicated by a solittotted line. The
otic. However, the stationary solutions constitute importanidashed line indicates th@) solution, which can be stable or un-
points in the phase space, around which the system evolvestable, depending on the total noivh
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TABLE I. The fundamentaW,(?)=w,&¢ for the stationary

solutions 1V, and VI.. in the limit where|a|— o, while |a|>|\| Lo (a) o8
and|a|>|7|. The second harmonic i,=yW?. o5l ] ol
Solution Fundamental Requirement ool Lo ool 8
(V2 Wy=*+W,=\2a(A ¥ 1) a(AF1)>0
. -0.51 -0.4
Vi w,=Vha[1+V1—4n2] Asig{a}>2 & e
/ — -1.0 L L . -0.8 L L .
wW,=Vha[1%V1-4A?] ~04 -02 00 02 04 -04 —02 00
®

Equation(4.13 is also known as the DST equatift] or 39 0
discrete NLS equation with two degrees of freed@h The 20
stationary solutions of this integrable dimer were first studied
by Eilbeck et al, who found four different solution§l]. = oo = o0
Comparing Table | with Table | ifil] (with e=1) we see
that (W, ,W,) for the asymptotic stationary solutiofl¥/) , , 15l Z20
(IvV)_, (VI) 4, and (VI) _ to the quadratic Eqs4.1-4.2,
correspond exactly to the DST stationary solutions termec  -so —40 ‘

11,11, 1-,and-1, respectively. The close connection with T10 05 0005 10 TR0 S10 00 10 20

the integrable DST dimer whejn|—« indicates that the

quadratic dimer is near integrable in this limit. Aninteresting £ 8. M vs © for the dynamics of the asymptotio/I) .

question is therefore how the transition from integrability tog|ytion given in Table I, when evolving in the system1-4.2.

nonintegrability occurs when decreasing. This can be il-  Tpe parameters arg=1, \=2.5, anda=20 (a), 10 (b), 1 (c), and

lustrated by looking at how the DST-like stationary solu-0.4(c). The integration distance is=20.

tions, given in Table |, behave when used as inital condition ] _ o o ) ] ]

in Egs.(4.1-4.2, for decreasing values &|. by a filled C|r(_;le. Thl$ is also the initial point of_ integration.
In Fig. 7 we show the results of numerical integration of 1N dotted line indicates the DST separatrix, separating

Egs.(4.1-4.2 with the solution(VI) , as initial condition, for trapped(lns]de from nontrappedoutsidg solutions to the

\=2.5, p=1, anda=100, 50, 41, and 38. The dynamics is DST equation(4.13. In terms of y and the normN this

illustrated as a phase-plane plot showing separatrix is given by

ME(|W1|2_ |W2|2)/NW Versus @EArg{W]_/Wz}, where 2 1— ’yNM2/4
N, =|W;|2+|W,|? is the norm of the fundamental. For Me=5Ni—1, cog09)= ——=—, (419
|| — <0, where the solution corresponds to a trapped station- N vi—-M

ary DST solution with most of the norid, =2\ « at site 1,

the trajectory is simply a point at,®)=(0,0.9, indicated whereN,(z) =*a sechyaz), with a=y2yN—4/y. We see

that the coupling to the second harmonic due to a finite but
large « introduces regular oscillations that grow whenis

0.9 decreased. Fow>40.9 the differencgW,|?>—|W,|? is al-
ways positive. Thus most of the fundamental power remains
o6l © j at site 1, and the solution can still be classified a trapped
solution. Fora<40.9 the trajectory crosses the DST separa-
osl 1 trix, which makes the fundamental power swop periodically
between the two sites. Thus the solution is no longer trapped.
= ook | However, the motion is still regular, even far=38.
' In Fig. 8 we show the trajectories for even smalter
values, =20, 10, 1, and 0.4. The motion becomes more and
-0.3r i more chaotic ag is decreased, with almost complete chaos
for «=0.4. However, even fox=10, the motion is still
-0.61 ¢ 1 highly regular and symmetric, showing a periodic exchange
: . of fundamental power between the two sites. We have found
-0.9 ! | | | I

that this gradual transition to chaos @ss decreased is gen-
erally representative for the behavior of the asymptotic solu-
tions(VI) . in Table I, that correspond to stable self-trapped

FIG. 7. M vs © for the dynamics of the asymptotie/l),  States in the DST limita|—e. .
solution given in Table I, when evolving in the systéml-2. The In order to see the corresponding effect on the delocalized
parameters arg=1 and\ =2.5, with a being given at the different asymptotic solutionglV) .., we do not need to perform nu-
curves. In all cases the integration distance wag0. The dotted ~Merical simulations. For any value af the initial condition
line indicates the DST separatriM(,04) (4.14. The filled circle ~ W;=*W,=W, andV;=V,=V belong to a special class of
indicates the point N1,0)=(0,0.9, corresponding to the limit “integrable initial conditions,” which reduces the dimer
a—, (4.1-4.2 to the integrable monomer

-0.3 -0.2 -0.1 0.0 04 02 0.3



iW+WV=0, iV-aV+W2=0, (4.19
after the transformation
W=We™ 2, V=Ve™?2 g=a+y+2. (4.16

Thus the motion of the two sites is completely decoupled,

and the individual powelN, at each siten is conserved.

Some part of the power will simply oscillate periodically

between the fundamental, and second harmoni¥,,, as

given by EQq.(3.13. Changinga only leads to a change of
the three roots/,, y,, andys, and thus the amplitude and

frequency of the oscillations.
For the symmetric initial conditio®W,=W, andV,=V,
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variables Ri,¢), (Ry,¢), and Rs3,5) comprises the re-
duced system, in which the Hamiltonian is given by

H=aN_—2yN35 —Ricog ¢) — 7VN% — 4R5c0q )

/1 1
/1 1
_(N+_Rl) EN,_RZ C05<5_¢)+§lﬂ
4.2)

whereN.. =N/4*=R;. The six dynamical equations may be
obtained as Hamilton equations, but these are far more com-

the full system(2.3-2.4 can be reduced to the monomer pjicated than Eqg4.1-4.2, which is why we have used Egs.

(3.1), regardless of the number of sites in the system. Suc

.1-4.2 when integrating the dimer numerically. However,

“integrable initial conditions™ are also found in the DST the equations can throw some light on the structure of the

equation(4.13 for W,=W.

C. The Hamiltonian structure

The dimer, given by Eqg4.1-4.2, is nonintegrable, and

obviously cannot be written as a simple(3ualgebra, as is

the case for the integrable monomer. However, we can still
reduce the system of 8 degrees of freedom to a Hamiltoniaf{
system of 6 degrees of freedom, which has a close rese
blance with the monomer. To do so we introduce polar co-

ordinates as in Eq3.4),

Wi(0)=x(e %, V() =y (e,

(4.17
and note that the phases can be written as
5 ¢\ o 6 ¢\ o
VTR 2‘(2‘3 7
(4.18
5 Y\ o o Y\ o
W(‘i*i*i’ 4’2—(‘5‘5)?

where the collective phases ¢, ¢, ando are defined as

0=(2[ p1t+ ol —[ b1+ D12, d=d1— s,
4.19
o=2[p1+ P ]+ [+ )12, Y=i1— ;.

From the scaling property, given by EQ.7), we see that the

sumo is an ignorable coordinate, just as the equivalent su
for the monomer. The conjugate variables to the remainin

three phases are

Ri=(X1=X2)12, Ry=(y1—Y2)/2,

(4.20
Rs=([X1+X2]=2[y1+Y2])/4,

where{R;,¢}=1,{R,,¢¥}=1, and{R3, §} =1, with the Pois-
son bracket being defined in E(8.15. However, theR;’s
do not satisfy the group structure given by E§.16), and
RI+R5+Rj is not a conserved quantity.

The individual intensitiex; andy; may easily be written

m

problem, which may be useful for future research on the
general systeni2.3-2.4.

V. DISCUSSION

In this work we have studied the generic model for
oupled quadratic nonlinear oscillators, each having two har-
monic frequencies close to resonance. Being generic this

m-

model appears as the basic model in many areas of funda-
mental physics and nonlinear science. Specific applications
include waveguide arrays in quadratic nonlinear, so-called
x'? materials, and interface waves between two media close
to Fermi resonance.

Large arrays of nonlinear waveguides are not relevant
with the present technology. We have therefore studied the
system with one and two coupled oscillators, the monomer
and dimer, with special emphasis on the dimer, which has
not yet been investigated in detail. In particular we have
analytically found all stationary solutions, and determined
their stability and self-trapping properties. Furthermore, we
have analyzed the Hamiltonian structure of the systems.

The stationary modes are an important subclass of solu-
tions for the characterization of a given system, and may
constitute the starting point for further analysis of the dy-
namical properties. The essential parameter for the dynamics
is the phase-mismatch parameter When |«| is large the
second harmonic mode is weak, and slaved to the fundamen-
tal mode, whose dynamics then determines the dynamics of
the whole system. In this limit the dominant fundamental
mode is described by the DST equation, which is the generic
model for coupled cubic nonlinear oscillators with only a
%ingle frequency. In nonlinear optics this is well known for
the corresponding continuum systems: Away from phase
matching x(*) materials have effective cubic properties, in
fact their nonintegrable dynamical equations reduce to the
NLS equation, which is integrable in one dimension.

However, the discrete equations studied here are more
intriguing than their continuum counterpart in that their inte-
grability properties, and those of the effective equations in
the large phase-mismatch limit, depend of the number of
oscillators. For one oscillator both the original system and
the limiting DST system are integrable. In the more interest-
ing case of two oscillators, the(® dimer is not integrable,

in terms of theR;’s and the norm. Thus the six conjugate but reduces to the integrable DST dimer in the limit of a
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large phase mismatch. We have given the specific connectiamatching. At a specific value af there is a transition, where
between the stationary solutions of these two systems in thige solution goes from being primarily localized at one os-
near-integrable limit. Five of the seven classes(8? solu-  cillator to being delocalized.

tions disappear, while the two remaining becomes the local-
ized (self-trappedl and delocalized DST solutions.

Finally, we have used the approximate self-trapped solu-
tion obtained in the near-integrable DST limit as an initial We would like to acknowledge M.F./dgensen, J.C. Eil-
condition in thex(® dimer, and numerically shown how this beck, F. Lederer, U. Peschel, and C. Etrich for valuable sug-
solution gradually develops dynamics. For latg¢ it is al-  gestions, and the financial support of the Department of In-
most stationary, while the dynamics becomes more and moréustry, Science and Tourism, under the Bilateral Science and
chaotic as|«| is decreased and we approach exact phas&echnology Program, Grant No. 96/4579.
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