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Stationary solutions and self-trapping in discrete quadratic nonlinear systems
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We consider the simplest equations describing coupled quadratic nonlinear (x (2)) systems, which each
consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply,
e.g., to optics, where they can describe arrays ofx (2) waveguides, and to solid state physics, where they can
describe nonlinear interface waves under the conditions of Fermi resonance of the adjacent crystals. Focusing
on the monomer and dimer we discuss their Hamiltonian structure and find all stationary solutions and their
stability properties. In one limit the nonintegrable dimer reduce to the discrete nonlinear Schro¨dinger~DNLS!
equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the
two systems correspond to each other and how the self-trapped DNLS solutions gradually develop
chaotic dynamics in thex (2) system, when going away from the near integrable limit.
@S1063-651X~97!05512-8#

PACS number~s!: 63.20.Ry, 63.20.Pw, 42.65.Wi, 42.65.Sf
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I. INTRODUCTION

Coupled nonlinear ordinary differential equatio
~ODE’s! are used in the description of many physical pro
lems. Such sets of equations can describe the dynamic
inherently discrete systems, such as coupled anharmoni
cillators or molecules in condensed matter physics, or wa
guide arrays in nonlinear optics. They can also be viewed
a discretization of a corresponding continuous ‘‘field’’ equ
tion.

One of the most studied systems of coupled nonlin
ODE’s is the discrete self-trapping~DST! equation@1#,

i ]jWn1 (
mÞn

~JnmWm!1uWnu2Wn50, ~1.1!

wherej is the evolution coordinate, andn5@1,n0#, with n0
being the total number of sites. Classically the DST equa
describes the dynamics ofn0 linearly coupled anharmonic
oscillators with complex mode amplitudesWn(j). The
strength of the coupling between sitesn and m is given by
Jnm . The DST equation describes a variety of effects in c
densed matter physics, such as polarons@2#, excitons in mo-
lecular chains@3#, stretching vibrations of the hydroge
bonds in small polyatomic molecules such as water, am
nia, methane, and benzene@4#, self-trapping of vibrational
energy in hydrogen bonded polypeptide crystals such as
etanilide @5# and N-methylacetamide@6#, and globular pro-
tein @7#.

The DST equation is a generalization of the discrete n
linear Schro¨dinger ~DNLS! equation

i ]jWn1r~Wn111Wn21!1uWnu2Wn50, ~1.2!

the difference being that the DST equation takes into acco
arbitrary linear coupling between all the sites through
561063-651X/97/56~6!/7257~10!/$10.00
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Jnm’s, whereas only nearest neighbor coupling (r) is taken
into account in the DNLS equation. Besides condensed m
ter physics the DNLS equation is also widely used in no
linear optics, where it can describe wave propagation in
rays of cubic nonlinear waveguides@8–10#. In that case
Wn(j) represents the slowly varying envelope of a wea
modulated carrier wave.

The DNLS equation is generic and represents the simp
possible model for coupled cubic nonlinear oscillators w
only a single frequency. Here we will consider the simple
model for coupled quadratic nonlinear oscillators, each w
two frequencies, a fundamental (Wn) and a second harmoni
(Vn), close to resonance

i ]jWn1hw~Wn111Wn21!1Wn* Vn50, ~1.3!

i ]jVn1hv~Vn111Vn21!2aVn1Wn
2/250, ~1.4!

wherehw (hv) determines the strength of the coupling b
tween fieldsWn (Vn) at neighboring sites. The phase mi
match a determines how far the two fields are from res
nance. The system~1.3-1.4! is used in solid state physics t
describe nonlinear interface waves between two media c
to Fermi resonance@11,12#, and in optics to describe array
of quadratic nonlinear waveguides@13#. For only one site,
n051, Eqs.~1.3-1.4! reduce to simple second harmonic ge
eration, which is one of the earliest and most well-stud
effects in nonlinear optics@14#.

Studying the system~1.3-1.4! is important, not only in
terms of fundamental physics, but also from a technolog
point of view. In optics the DNLS equation is the simple
model for beam propagation in arrays of cubic~or x (3)) non-
linear waveguides with a centrosymmetric crystal struct
@9#. One of the most interesting effects of the cubic nonl
earity is that the index of refraction becomes dependent
the intensity. This is known as the Kerr effect and leads
7257 © 1997 The American Physical Society
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7258 56BANG, CHRISTIANSEN, AND CLAUSEN
self-action processes, such as self-phase modulation and
trapping~or self-focusing in continuum media!, which can be
used in all optical signal processing@15#. However, in con-
ventional materials the third order Kerr nonlinearity is we
and relatively slow~see @15# for a review!. By using the
generally stronger and faster second order quadratic~or x (2))
nonlinearity in noncentrosymmetric materials instead, th
obstacles can be overcome.

It is now well known that quadratic materials have effe
tive cubic properties, such as an intensity dependent ref
tive index and self-phase modulation. The physical mec
nism behind these effects is known as cascading, becaus
fundamental and second harmonic wave components inte
with themselves through repeated up and down conver
~see@16# for a comprehensive review on cascading and
application to all-optical signal processing!. However, it is
only in certain limits that the cascading nonlinearity can
treated as an effective cubic nonlinearity. Generally thex (2)

materials display a much richer variety of phenomena t
can be found inx (3) materials@16#. As we will briefly show,
the simplest model for beam propagation in arrays of q
dratic nonlinear waveguides is given by Eqs.~1.3-1.4!. Thus
it is important to understand the properties of the syst
~1.3-1.4!, in order to be able to fully utilize the potential o
quadratic nonlinearity.

Furthermore, the system~1.3-1.4! is important from the
context of being the simplest discretization of the continu
equations. In the continuum limit Eq.~1.1! becomes the one
dimensional~1D! NLS equation, which is integrable and ha
stable soliton solutions@17#. In higher dimensions the soli
tary wave solutions to the NLS equation are unstable and
collapse in finite time~see @18# for a general review!. In
contrast the continuum counterpart to Eqs.~1.3-1.4! has
stable solitary wave solutions in all dimensions of physi
interest@19–21#, and regardless of the initial wave functio
a catastrophic collapse can never occur@19#. Due to the na-
ture of the cascaded nonlinearity, the solitary waves in q
dratic materials differ from the NLS soliton, in that they ha
two components, the fundamental wave and its second
monic. Experimentally, two-component solitary waves ha
been observed in both 2D@22# and 1D@23#.

Since quadratic materials have effective cubic proper
there is obviously a connection between the two kinds
nonlinearities. Indeed it is possible to derive an NLS eq
tion for the fundamental wave in quadratic materials, us
perturbation techniques@24#. The connection may also b
seen directly from the discrete Eqs.~1.3-1.4! by assuming
that the phase mismatch is large,uau@1, while the deriva-
tives of Vn remain finite. In that case the second harmo
field is weak and slaved to the fundamental,Vn'Wn

2/(2a),
with Wn being determined by the DNLS equation.

The properties of the continuum equations correspond
to Eqs. ~1.3-1.4! are well known; it has a continuous on
parameter family of bright solitary wave solutions@25#,
which is stable, except for only a narrow region in parame
space@21#. A lot less is known about the discrete Eqs.~1.3-
1.4!. The main work has been done in the context of Fe
resonance interface waves@11,12#, with only a single work
published in nonlinear optics@13#. In general the focus ha
been on systems with many sites (n0@1!, in which localized
self-trapped states of different topology have been found
elf-
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exist, that at low amplitude can move through the lattice a
either fuse, annihilate, or pass through each other when
liding @13#. In contrast to the DNLS equation, whose co
tinuum limit is integrable, these collision properties are a
found in the nonintegrable continuum limit of Eqs.~1.3-1.4!
@26#.

Even for the more conventional cubic nonline
waveguides, the largest array fabricated to date consist
only 11 waveguides@27#. In the context of nonlinear optics i
therefore seems most appropriate to study systems with
a few sites. Here we consider the coupler, or so-called dim
with n052, which has not yet been analyzed in detail. T
x (2) dimer is nonintegrable, but in the limit of a large pha
mismatch,uau@1, it reduces to the DNLS dimer, which i
integrable@1#. Thus it is naturally to compare the propertie
of the two systems, which we do throughout the paper.
most cases no analytical forms for solutions of Eqs.~1.3-
1.4!, or the DST or DNLS equations, are known. Howev
there are a physically important subclass of solutions that
be easily classified and often expressed in a simple fo
These are the stationary solutions, which we therefore fo
on in the comparison. We consider the system from the p
of view of optics and thus we will talk about cw beam
envelope functions, and waveguides, etc.

In Sec. II we heuristically derive the model and give
main features, such as conserved quantities, Hamilton
structure, and symmetries. In Secs. III A and III B we brie
consider the stationary solutions and fixed points of
monomer,n051. These are of course known from the theo
of second harmonic generation@14#, but we will need them,
since in certain cases the dimer can be reduced to the m
mer. Furthermore, in Sec. III C, we discuss the Hamilton
structure of the monomer, and show how it can be written
a compact su~2! algebra, in a similar way as for the DS
equation@28#. The dimer is treated in Sec. IV. In particula
we find all the stationary solutions analytically and analy
their stability properties in Sec. IV A. In Sec. IV B we the
consider their self-trapping properties, and how they are c
nected to the stationary solutions of the DNLS dimer wh
uau@1. Since the DNLS dimer is integrable, we can ta
about a near-integrable limit of thex (2) dimer. An interesting
question is then how the stationary DNLS solutions, wh
used as initial conditions in thex (2) system, will develop
dynamics when going away from this limit. This is also co
sidered in Sec. IV B, where we show how a gradual tran
tion to chaos occurs. Finally, we discuss the Hamilton
structure in Sec. IV C, and finish with a conclusion in Se
V.

Before proceeding, we would like to draw attention to
recent paper by Dubovskii and Orlov@12#, in which they
analytically find stationary solutions of Eqs.~1.3-1.4! for
n052, 4, and 6. However, they consider only real solutio
and do not analyze stability. This means that forn052, they
only find two of the all in all seven different classes of s
lutions that we find here.

II. THE MODEL

Neglecting spatial walk-off, the dimensionless equatio
for cw beams in a lossless waveguide are the same as
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56 7259STATIONARY SOLUTIONS AND SELF-TRAPPING IN . . .
second harmonic generation@14#,

i ]zW1xW *Ve2 ibz50, is]zV12xW 2eibz50,

where the complex functionsW(z) and V(z) are the low-
amplitude, slowly varying envelopes of the fundamen
wave and its second harmonic, respectively. The param
b is proportional to the phase mismatchDk52k12k2, s5
k2 /k1'2 is the ratio between the wave numbers, andx is the
normalized appropriate component of thex (2) susceptibility.
The mode structure in the transverse (x,y) plane is deter-
mined separately~see, e.g.,@29#!.

Let us now consider an array ofn0 identical regularly
spaced quadratic nonlinear wave guides, as depicted in
1. Assume the distance between waveguides,d, to be large
enough to allow the field in each waveguide to be trea
almost as though in isolation. By almost we mean thad
should still be sufficiently small to allow the evanescent fie
tails in neighboring waveguides to overlap just enough
create a small linear coupling~power leakage!. Under these
assumptions, to lowest order, the stationary envelope of
electric field in thenth waveguide is governed by the equ
tions

i ]zWn1r~Wn111Wn21!1xW n*Vne2 ibz50, ~2.1!

is]zVn1sk~Vn111Vn21!12xW n
2eibz50, ~2.2!

where n5@1,n0#, and r and k determine the coupling be
tween adjacent waveguides for the fundamental and sec
harmonic, respectively.

In order to write the equations in a convenient dimensi
less Hamiltonian form, we apply the transformation

Wn~z!5S rAs

2x DWn~z!, Vn~z!5S r

x DVn~z!eibz,

wherez5rz. This reduces Eqs.~2.1-2.2! to

iẆn1~Wn111Wn21!1Wn* Vn50, ~2.3!

iV̇n1h~Vn111Vn21!2aVn1Wn
2/250, ~2.4!

where the dot denotes differentiation with respect toz. We
have assumed here thatrÞ0, in order to reduce the numbe
of parameters in the model to two: the relative coupli
strengthh5k/r, and the normalized phase mismatcha5
b/r. The system~2.3-2.4! conserves the normN ~dimension-
less power! and the HamiltonianH:

FIG. 1. Schematic diagram of part of an array of waveguides
length L. The width of each waveguide isd and the spacing be
tween waveguides isd.
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@ uWnu212uVnu2#, ~2.5!

H5(
n

@auVnu22Wn* ~Wn111Wn21!2hVn* ~Vn111Vn21!

2Re$Wn
2Vn* %#. ~2.6!

It is Hamiltonian with the conjugate variables (Wn ,iWn* )

and (Vn ,iVn* ) and can be written in the standard formiẆn5

]H/]Wn* , iV̇n5]H/]Vn* . Furthermore, it is invariant unde
the transformation

Wn~z!→Wn~z!eiV, Vn~z!→Vn~z!ei2V, ~2.7!

whereV is an arbitrary constant phase. This will be use
when considering stationary solutions, since it allows us
assume that one of the fields is real and positive.

III. ONE WAVEGUIDE — THE MONOMER

In this section we consider a single waveguide, cor
sponding to simply second harmonic generation@14,30#.
Then Eqs.~2.3-2.4! reduce to the system of two equations

iẆ11W1* V150, iV̇12aV11W1
2/250, ~3.1!

which is integrable and can be compared to the integra
DST dimer ~same number of degrees of freedom! @1#. We
first map the regions of existence and stability of all statio
ary solutions to Eqs.~3.1! ~Sec. III A!. Then we reduce the
equations to the simplest possible Hamiltonian system o
degrees of freedom, and characterize the fixed points
dynamical behavior~Sec. III B!. Finally we discuss the
Hamiltonian structure of the equations in Sec. III C and sh
how they can be written in terms of Feynman variables t
satisfy a compact su~2! algebra, in a similar way as for th
DST equation@28#.

A. Stationary solutions

The stationary solutions are defined as

W1~z!5w1eilz, V1~z!5v1ei2lz, ~3.2!

where the eigenvaluel is real. The amplitudew1 can be
assumed to be real and non-negative, because of the sc
property given by Eq.~2.7!. Inserting Eq.~3.2! into Eqs.
~3.1! we find two nonzero solutions. The solution

~ I! w150, uv1u25N/2 ~3.3!

exists atl52a/2, whereas the solution

~ II ! w1
252l~a12l!, v15l ~3.4!

exists forl,min$0,2a/2% andl.max$0,2a/2%. The zero
solutionw15v150 exists for alll, but here and in the fol-
lowing we will not consider this solution.

We have depicted the solutions~I! and ~II ! in Figs. 2~a!
and 2~b!. From Fig. 2~a! we see that except at exact pha
matching,a50, there is a gap in the eigenvalue spectrum

f
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which nonzero solutions do not exist. Such a gap is
found in the corresponding DST dimer, where there is
threshold instead@1#. Linear stability analysis shows that th
solution~I! is stable forN<a2/2, but unstable forN.a2/2,
while the solution~II ! is stable in the whole domain of exis
tence. From Fig. 2~b! we see that at fixed normN51 the
solution ~II ! bifurcates continuously into the stable part
the solution~I! at a254l252. Thus we have a stable sta
tionary solution for alla.

B. Fixed points and dynamical solutions

Let us introduce polar coordinates,

W1~z!5Ax~z!eif~z!, V1~z!5Ay~z!eic~z!, ~3.5!

where the intensitiesx5N22y andy are real and positive
and the phasesf andc are real. Inserting Eq.~3.5! into Eqs.
~3.1!, and separating the real and imaginary parts, it is t
straightforward to derive the Hamiltonian system of two co
jugate degrees of freedom:

ẏ52~N22y!Ay sin~u!52
]H

]u
, ~3.6!

u̇5a1F6y2N

2Ay
Gcos~u!5

]H

]y
, ~3.7!

whereu(z)52f(z)2c(z) andH is given by

H5ay2~N22y!Ay cos~u!. ~3.8!

Equations~3.6-3.7! assume thatyÞ0 and yÞN/2, and are
therefore not physically valid in these limits, where the ori
nal Eqs.~3.1! must be applied instead.

Now let us look at the fixed points (y,u)5(ye ,ue), for
which ẏ5u̇50. From Eq.~3.6! we see that there can be
such solutions, for whichye50, ye5N/2, and cos(ue)561,
respectively. Equations~3.1! give that the limitye50 can
never be a fixed point, whileye5N/2 always is a valid fixed
point, since we can choose the phasef(z) arbitrarily. In
contrast, Eq.~3.7! gives unphysically thatye5N/2 is only
valid for uau<A2 and cos(ue)52a/A2N. The physically
valid fixed points are therefore

FIG. 2. ~a! Norm N as function of the eigenvaluel for the
stationary solutions~I! and ~II !, given by Eqs.~3.3-3.4!, with the
phase-mismatch parametera.0. Fora,0 the curves are reverse
around the verticalN axis.~b! The dependence ofa on l for N51.
Linearly stable~unstable! solutions are indicated by a solid~dotted!
line.
t
a

n
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-

~A! ye5N/2,

~B! cos~ue!511, Aye5~Aa216N2a!/6,

~C! cos~ue!521, Aye5~Aa216N1a!/6, ~3.9!

where solution~A! exist for all a, while ~B! and ~C! exists
for a>2A2N anda<A2N, respectively. The solutions~A!
and ~B! correspond to the stationary solutions~I! and ~II !,
respectively~thus the stationary solutions are only a spec
branch of the fixed point solutions!. Accordingly, we find
that the solution~A! is linearly stable foruau>A2N, and
unstable foruau,A2N, while the solutions~B! and ~C! are
stable in the whole domain of existence. The fixed points a
their linear stability properties were found by Trilloet al.,
who studied second harmonic generation using phase-p
methods@30#. Here we will give a brief description of the
analytical solution to the monomer. This will be useful f
the discussion in Sec. IV, where we show that for cert
initial conditions the dimer reduces to the monomer.

Equations~3.6-3.7! can be reduced to a single equatio
for the fraction of power in the second harmonic,y(z),

ẏ21P~y!50, ~3.10!

which is equivalent to the dynamical equation for a classi
particle moving in a potentialP(y). The potentialP(y) is a
cubic polynomium,

P~y!524y31~a214N!y22~2aH1N2!y1H2.
~3.11!

In Fig. 3~a! we depict the number of real roots of the cub
equationP50 in the (H,a) plane, which is simply given by
the sign of the discriminant

D5~H2aN/2!2~H22d1H2d0!/64, ~3.12!

whered05N2(a218N)/108 andd15a(a219N)/27. Thus
P50 has 1 real root forD.0 ~white regions! and 3 real
roots for D<0 ~shaded regions!, with at least two of them
being equal forD50 ~solid lines!. On the solid linesH
equals that of the fixed-point solutions~A!, ~B!, and~C!. The
dark shaded region indicates the physically valid regime
which H(a) can be obtained for 0,y,N/2 anducos(u)u<1.
At the two points (H,a)56(1/A2,A2) there is a triple real
root.

FIG. 3. ~a! Regions of the (H,a) plane forN51, in which the
cubic equationP(y)50, with P(y) given by Eq.~3.11!, has 1 real
root ~white!, and 3 real roots~shaded!. On the solid lines 2 of the 3
real roots are equal and at the points all 3 roots are equal.
darker shaded region indicates the physically valid regime.~b! The
potentialP(y) for the 3 solid lines in~a!, with a50.4. The points
indicate the fixed point solutions~A!–~C!, given by Eqs.~3.9!.



nd

l
d

s

by

to

o

m

d
c-
n
ll

e
-

he

m-

-

a

o-

of
, as
re

ew
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The potentialP(y) is shown in Fig. 3~b! for a50.4 andH
on the 3 solid lines@fixed points~A!, ~B!, and~C!#. From the
particle analogy we can clearly identify the fixed points a
their stability @~A! is unstable,~B! and ~C! are stable#.

In the physical region of the (H,a) plane, the genera
solutiony(z) to Eq. ~3.10! is a periodic function determine
by the three real roots 0<y1<y2<y3<N/2,

y~z!5y11~y22y1!sn2~Ay32y1@z1z0#,k!, ~3.13!

which oscillates between the two lowest rootsy1 and y2.
Here sn(u,k) is the Jacobi elliptic function with modulu
k25(y22y1)/(y32y1). This solution, wherez0 is deter-
mined by the initial condition, was first found and studied
Armstronget al. @14#.

On the lineH5aN/2, the two largest roots are identical
the fixed point~A!, y35y25N/2 (k251!, and y15a2/4. In
this case the period goes to infinity and the solution~3.13!
reduces to

y~z!5
1

4
a21

1

4
~2N2a2!tanh2S 1

2
A2N2a2@z1z0# D .

This solution was first studied in@31#. It is of significant
physical importance, since it predicts that total transfer
power to the second harmonic (y→N/2) is possible. In the
other simple cases, corresponding to the fixed points~B! and
~C!, the two lowest roots are identical,y15y2 (k50), and
the solution is a constant,y(z)5y(0). Thus no conversion to
the second harmonic can be obtained.

C. The Hamiltonian structure

The quadratic monomer~3.1! has four degrees of freedom
~amplitude and phase ofW1 andV1). Since it has two con-
served quantities and consists of two equations, it is co
pletely integrable. Its solution in terms of the powery in the
second harmonic is well known@14# and has been reviewe
in Sec. III B. In this section we give the Hamiltonian stru
ture and underlying symmetry. From this the full solutio
including the individual phases, can be found systematica

For one waveguide the Hamiltonian~2.6! reduces to

H5auV1u22Re$W1
2V1* %, ~3.14!

where W1 and V1 satisfy the Poisson structur
$W1 ,iW1* %51, $V1 ,iV1* %51, with the Poisson brackets be
ing defined as

$a,b%[2 i (
n51

n0

(
j 51

2
]a

]f jn

]b

]f jn*
2

]b

]f jn

]a

]f jn*
, ~3.15!

where f1n5Wn and f2n5Vn . Thus (W1 ,iW1* ) and
(V1 ,iV1* ) are Hamiltonian conjugate variables. Using t
Poisson structure, the equations of motion~3.1! can be writ-
ten asẆ15$W1 ,H% and V̇15$V1 ,H%.

Consider the compact su~2! algebra

$r 1 ,r 2%5r 3 , $r 2 ,r 3%5r 1 , $r 3 ,r 1%5r 2 ,
~3.16!

$C,r j%50, j 51,2,3, C5r 1
21r 2

21r 3
2 ,
f

-

,
y.

whereC acts as the Casimir element. Because of the sy
metric group structure, the conjugate variablespj ,
$r j ,pj%51, are given by

p15arctan~r 2 /r 3!, p25arctan~r 3 /r 1!,
~3.17!

p35arctan~r 1 /r 2!.

For Eqs.~3.1! the algebra~3.16! can be realized by the Feyn
man variables

r 15A2uV1uRe$W1* AV1%,

r 25A2uV1uIm$W1* AV1%,

~3.18!

r 35~ uW1u222uV1u2!/2,

C5~ uW1u212uV1u2!/2,

in terms of which the Hamiltonian may be written as

H5a~C2r 3!/21~r 2
22r 1

2!/AC2r 3. ~3.19!

The Casimir element is proportional to the norm,C5N/2,
and therefore a constant of motion,Ċ5$C,H%50. Thus the
monomer~3.1! has a simple su~2! group structure, closely
related to its integrability. The integrable DST dimer has
similar structure@28#.

The system is considerably simplified if we introduce p
lar coordinates as in Eq.~3.4!:

W1~z!5Ax~z!ei [s~z!1d~z!]/4,
~3.20!

V1~z!5Ay~z!ei [s~z!2d~z!]/2,

where we have written the phases in terms of the sums5
(2f1c)/2 and the difference d5(2f2c)/2. Since
$C,s%51 we see thats has no influence on the dynamics
the other variables, and thus is an ignorable coordinate
we would expect from the calculations in Sec. III B, whe
only u52d appears in Eqs.~3.6-3.7!. In polar coordinates
the Feynman variables simplify to

r 15A2xy cos~d!, r 252A2xy sin~d!,
~3.21!

r 35~x22y!/2, C5~x12y!/2,

whered is the conjugate variable ofr 3, $r 3 ,d%51.
Introducing a new evolution coordinatedj5r 1r 2dz the

dynamical equationsṙ j5$r j ,H% become

r 1,28 56
3a

4
7

H

2~C2r 3!
1r 3A 2

C2r 3
,

~3.22!

r 38522A2/~C2r 3!,

where a prime denotes differentiation with respect to the n
coordinatej. Integrating the equation forr 3 and subse-
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quently the equations forr 1 andr 2, we obtain Eqs.~3.6-3.7!,
wherey5@3(j2j0)/3#2/3, j0 being an integration constant

The dynamical equations ford and for the ignorable co
ordinates are obtained asḋ5$d,H% and ṡ5$s,H%, thus
yielding the dynamics of the individual phasesf andc. This
is of crucial importance for, e.g., Mach-Zehnder interfero
eters, but it is only recently that this calculation has be
carried out in detail@32#, without considering the Hamil-
tonian su~2! structure though.

IV. TWO WAVEGUIDES — THE DIMER

We now consider two waveguides and thus the sys
~2.3-2.4! reduces to the four coupled equations

iẆn1W32n1Wn* Vn50, ~4.1!

iV̇n1hV32n2aVn1Wn
2/250, n51,2, ~4.2!

which are not integrable, just as the DST equation for fo
sites@1#. However, we can still find all stationary solution
analytically and check their stability, which we do in Se
IV A. We find 7 different classes of solutions, two of whic
have been found before@12#, however, without considering
the stability and the general scaling invariance given by E
~2.7!. In Sec. IV B we discuss the self-trapping properties
the stationary solutions. In particular we show how the s
tionary solutions are simply connected to the known stati
ary solutions of the DST dimer in the limituau@1. Further-
more, we use the self-trapped DST stationary solutions
initial condition in the full quadratic system, and show ho
their dynamics gradually becomes more chaotic asuau is
decreased. Finally we discuss the Hamiltonian structure
the equations in Sec. IV C and show how they can be
duced to a Hamiltonian system of six degrees of freedom

A. Stationary solutions

In analogy with the monomer we consider stationary
lutions of the form

Wn~z!5wneilz, Vn~z!5vnei2lz, ~4.3!

wherel is real andw1 is real and non-negative. All solution
with w1 complex may be obtained from the phase rotat
invariance given by Eq.~2.7!. For two waveguides Eqs.~2.3-
2.4! then reduce to

F l 21

21 l GFw1

w2G5F w1v1

w2* v2G , ~4.4!

Fa12l 2h

2h a12lGF v1

v2G5Fw1
2/2

w2
2/2G . ~4.5!

Here Eq.~4.5! can be considered as a linear inhomogene
set of equations, with the determinantD54(l2l1)~l2l2),
wherel6[(2a6h)/2. For D50 there exist three qualita
tively different solutions
-
n

m

r

.

s.
f
-
-

as

of
-

-

n

s

~ I! wn50, uv1u21uv2u25N/2 for l5l6 ,

~ II ! w256w1 , vn5l71 for l5l2 , hÞ0,

~ III ! w256 iw1 , v15l7 i , v252l7 i

for l5l1 , hÞ0, ~4.6!

wherew15AN/222uv1u2 in solutions~II ! and ~III !. The so-
lution ~I! is equivalent to that for the monomer. ForDÞ0
Eq. ~4.5! gives the second harmonic

vn5@~a12l!wn
21hw32n

2 #/~2D !, ~4.7!

in terms of the fundamental. In this case there exist fo
classes of solutions. Whenw2

25w1
2 the solution is

~ IV ! w256w156A4~l71!~l2l1!,

vn5l71 for DÞ0, ~l71!~l2l1!.0.
~4.8!

Whenw2 is allowed to be complex, anduw2u25w1
2, the fun-

damental fields are found to

~V! w15A4l~l2l2!,

w252D/~hw1!6 iAw1
22D2/~hw1!2

for DÞ0, l~l2l2!.0, hÞ0,

h2l2.~l2l1!2, ~4.9!

with vn being given by Eq.~4.7!. In the general case whe
uw2u2Þw1

2, there are two solutions, for which the fundame
tals are given by

~VI ! w254~l2l2!/w1 , w15Ax1 or Ax2

for DÞ0, lÞ2a/2, b,22Ac, ~4.10!

wherexn are the two roots of the quadratic equation

x21bx1c50,

b522lD/~a12l!, c516~l2l2!2, ~4.11!

andvn is given by Eq.~4.7!. Finally, in the special case whe
l52a/2 anduw2u2Þw1

2, the solution is

~VII ! w25
2h

w1
, v152

2h

w1
2

, v252
w1

2

2h

for DÞ0, l5a50, w1Þ0, hÞ0, ~4.12!

where w1 can be found fromN. In the following we will
denote the solutions~IV !, ~V!, and~VI ! as general solutions
because they exist in a certain interval inl, while the solu-
tions ~I!, ~II !, ~III !, and~VII ! are termed particular solutions
because they only exist for discrete values ofl.

Due to the scaling invariance, given by Eq.~2.7!, each of
the classes~I!–~VII ! correspond to infinitely many solutions
The symmetric~IV ! 1 and antisymmetric~IV ! 2 solutions, as
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well as the~VI ! solution, were also found by Dubovskii an
Orlov @12#. However, the issue of stability was not consi
ered, and only the sign degeneracy of the fundamental@V5
p in Eq. ~2.7!# was taken into account.

In Fig. 4 we show the normN as a function of the soliton
eigenvaluel for the solutions~II !–~VII !. As a representative
example we have usedh52a52, for which solution~VII !
does not exist. Stable~unstable! solutions are indicated by
solid ~dotted! line. The solutions~II !, ~III !, ~V!, and~VI ! all
have two degenerate branches, which cannot be dis
guished by thisN(l) diagram. In Fig. 4 these pair of solu
tions all have the same stability properties, except for
solution~II !, for which the component with the plus~minus!
sign is unstable~stable! for N.25, and does not exist fo
lower values ofN.

The solution~I! is special, since for each value of th
norm, there exist infinitely many subbranches of solutio
whose stability properties vary with the relative size ofuv1u2
and uv2u2. In Fig. 5 we show the stability regimes of th
solution~I! as a function of 2uv1u2/NP@0,1# for h52a52,
as in Fig. 4. The curve that separates the stable and uns
regimes is shown as a solid line for the branch atl5l1 and
a dashed line for the branch atl5l2 . For both branches the
solution is unstable if it has a large value of the norm, b
becomes stable for sufficiently small values of the norm.

B. Self-trapping and the DST limit

The dynamical equations~4.1-4.2! for 2 waveguides are
nonintegrable, and consequently the dynamics may be
otic. However, the stationary solutions constitute import
points in the phase space, around which the system evo

FIG. 4. NormN as a function of the eigenvaluel for the sta-
tionary solutions~II !–~VII !, with h52a52. Linearly stable~un-
stable! solutions are indicated by a solid~dotted! line and the curves
are labeled with the solution they represent. The dashed line
cates that the~II !1 @~II 2)# solution is unstable~stable!. The bottom
figure shows a closeup for smallN.
n-

e

,

ble

t

a-
t

es.

Of particular interest are the self-trapped states, where
norm is primarily concentrated in one of the degrees of fr
dom. Here we will consider trapping in terms of whether t
norm is concentrated in one of the two waveguides,N'Nn5
uWnu212uVnu2.

In Fig. 6 we therefore depict the ratioN1 /N2 of the norm
in the two waveguides, for the stationary solutions~I!–~VII !.
The parameters are the same as in Figs. 4 and 5,h52 and
a51, and thus the particular solution~VII ! does not exist.
We see that of the general solutions~IV !, ~V!, and~VI !, only
the solution~VI !, for which uW1u2ÞuW2u2, can correspond to
a self-trapped state, with eitherN1'N or N2'N. Of the
particular solutions~I!, ~II !, ~III !, and~VII !, only the solution
~I! can represent a self-trapped state. Note that with this
resentation the two degenerate~VI ! solutions, ~VI ! 1 and
~VI ! 2 , can be clearly distinguished.

Let us consider the limit whereuau→`, while both V̇n
and the coupling parameterh remain finite. Eqs.~4.1-4.2!
can then be reduced to

iẆn1W32n1guWnu2Wn50, n51,2 ~4.13!

where the nonlinearity parameterg51/(2a) and the second
harmonic is given byVn5gWn

2 . The expressions for the gen
eral solutions~IV ! and~VI ! in this limit, whereuau@ulu and
uau@uhu, are given in Table I, from which it is clearly see
that the solutions VI6 correspond to a self-trapped state f
sufficiently large values ofulu. All other solutions do not
exist in this limit.

i-

FIG. 5. NormN vs normalized power 2uv1u2/N for the station-
ary solution ~I! at l5l1 ~solid! and l5l2 ~dashed!, with
h52a52. In the regime below~above! the curve the solution is
linearly stable~unstable!.

FIG. 6. Ratio of the norm in the two waveguides,Nn5
uWnu212uVnu2, vs the eigenvaluel for h52a52. Linearly stable
~unstable! solutions are indicated by a solid~dotted! line. The
dashed line indicates the~I! solution, which can be stable or un
stable, depending on the total normN.
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7264 56BANG, CHRISTIANSEN, AND CLAUSEN
Equation~4.13! is also known as the DST equation@1# or
discrete NLS equation with two degrees of freedom@9#. The
stationary solutions of this integrable dimer were first stud
by Eilbeck et al., who found four different solutions@1#.
Comparing Table I with Table I in@1# ~with e51) we see
that (W1 ,W2) for the asymptotic stationary solutions~IV ! 1 ,
~IV ! 2 , ~VI ! 1 , and ~VI ! 2 to the quadratic Eqs.~4.1-4.2!,
correspond exactly to the DST stationary solutions term
↑↑, ↑↓, ↑•, and•↑, respectively. The close connection wi
the integrable DST dimer whenuau→` indicates that the
quadratic dimer is near integrable in this limit. An interesti
question is therefore how the transition from integrability
nonintegrability occurs when decreasinguau. This can be il-
lustrated by looking at how the DST-like stationary so
tions, given in Table I, behave when used as inital condit
in Eqs.~4.1-4.2!, for decreasing values ofuau.

In Fig. 7 we show the results of numerical integration
Eqs.~4.1-4.2! with the solution~VI ! 1 as initial condition, for
l52.5, h51, anda5100, 50, 41, and 38. The dynamics
illustrated as a phase-plane plot showi
M[(uW1u22uW2u2)/Nw versus Q[Arg$W1 /W2%, where
Nw5uW1u21uW2u2 is the norm of the fundamental. Fo
uau→`, where the solution corresponds to a trapped stat
ary DST solution with most of the normNw52la at site 1,
the trajectory is simply a point at (M ,Q)5~0,0.6!, indicated

TABLE I. The fundamentalWn(z)5wneilz for the stationary
solutions IV6 and VI6 in the limit whereuau→`, while uau@ulu
and uau@uhu. The second harmonic isVn5gWn

2 .

Solution Fundamental Requirement

IV 6 w156w25A2a~l71! a(l71).0

VI 6 w15Ala@16A124/l2#
lsign$a%.2

w25Ala@17A124/l2#

FIG. 7. M vs Q for the dynamics of the asymptotic~VI !1

solution given in Table I, when evolving in the system~4.1-2!. The
parameters areh51 andl52.5, witha being given at the differen
curves. In all cases the integration distance wasz520. The dotted
line indicates the DST separatrix (Ms ,Qs) ~4.14!. The filled circle
indicates the point (M ,Q)5~0,0.6!, corresponding to the limit
a→`.
d

d

n

f

n-

by a filled circle. This is also the initial point of integration
The dotted line indicates the DST separatrix, separa
trapped~inside! from nontrapped~outside! solutions to the
DST equation~4.13!. In terms of g and the normN this
separatrix is given by

Ms5
2

N
N121, cos~Qs!5

12gNM2/4

A12M2
, ~4.14!

whereN1(z)56a sech(gaz), with a5A2gN24/g. We see
that the coupling to the second harmonic due to a finite
large a introduces regular oscillations that grow whena is
decreased. Fora.40.9 the differenceuW1u22uW2u2 is al-
ways positive. Thus most of the fundamental power rema
at site 1, and the solution can still be classified a trapp
solution. Fora,40.9 the trajectory crosses the DST sepa
trix, which makes the fundamental power swop periodica
between the two sites. Thus the solution is no longer trapp
However, the motion is still regular, even fora538.

In Fig. 8 we show the trajectories for even smallera
values,a520, 10, 1, and 0.4. The motion becomes more a
more chaotic asa is decreased, with almost complete cha
for a50.4. However, even fora510, the motion is still
highly regular and symmetric, showing a periodic exchan
of fundamental power between the two sites. We have fo
that this gradual transition to chaos asa is decreased is gen
erally representative for the behavior of the asymptotic so
tions ~VI ! 6 in Table I, that correspond to stable self-trapp
states in the DST limituau→`.

In order to see the corresponding effect on the delocali
asymptotic solutions~IV ! 6 , we do not need to perform nu
merical simulations. For any value ofa the initial condition
W156W25W, andV15V25V belong to a special class o
‘‘integrable initial conditions,’’ which reduces the dime
~4.1-4.2! to the integrable monomer

FIG. 8. M vs Q for the dynamics of the asymptotic~VI !1

solution given in Table I, when evolving in the system~4.1-4.2!.
The parameters areh51, l52.5, anda520 ~a!, 10 ~b!, 1 ~c!, and
0.4 ~c!. The integration distance isz520.
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iẆ̃1W̃* Ṽ50, i V̇̃2ãṼ1W̃2/250, ~4.15!

after the transformation

W5W̃e7 iz, V5Ṽe7 i2z, a5ã1h62. ~4.16!

Thus the motion of the two sites is completely decoupl
and the individual powerNn at each siten is conserved.
Some part of the power will simply oscillate periodical
between the fundamentalWn and second harmonicVn , as
given by Eq.~3.13!. Changinga only leads to a change o
the three rootsy1, y2, and y3, and thus the amplitude an
frequency of the oscillations.

For the symmetric initial conditionWn5W, and Vn5V,
the full system~2.3-2.4! can be reduced to the monom
~3.1!, regardless of the number of sites in the system. S
‘‘integrable initial conditions’’ are also found in the DS
equation~4.13! for Wn5W.

C. The Hamiltonian structure

The dimer, given by Eqs.~4.1-4.2!, is nonintegrable, and
obviously cannot be written as a simple su~2! algebra, as is
the case for the integrable monomer. However, we can
reduce the system of 8 degrees of freedom to a Hamilton
system of 6 degrees of freedom, which has a close res
blance with the monomer. To do so we introduce polar
ordinates as in Eq.~3.4!,

Wj~z!5Axj~z!eif j ~z!, Vj~z!5Ayj~z!eic j ~z!,
~4.17!

and note that the phases can be written as

f15S d

4
1

f

2 D1
s

4
, f25S d

4
2

f

2 D1
s

4
,

~4.18!

c15S 2
d

2
1

c

2 D1
s

2
, c25S 2

d

2
2

c

2 D1
s

2
,

where the collective phasesd, f, c, ands are defined as

d5~2@f11f2#2@c11c2# !/2, f5f12f2 ,
~4.19!

s5~2@f11f2#1@c11c2# !/2, c5c12c2 .

From the scaling property, given by Eq.~2.7!, we see that the
sums is an ignorable coordinate, just as the equivalent s
for the monomer. The conjugate variables to the remain
three phases are

R15~x12x2!/2, R25~y12y2!/2,
~4.20!

R35~@x11x2#22@y11y2# !/4,

where$R1 ,f%51, $R2 ,c%51, and$R3 ,d%51, with the Pois-
son bracket being defined in Eq.~3.15!. However, theRj ’s
do not satisfy the group structure given by Eq.~3.16!, and
R1

21R2
21R3

2 is not a conserved quantity.
The individual intensitiesxj andyj may easily be written

in terms of theRj ’s and the norm. Thus the six conjuga
,

h

ill
n

m-
-

m
g

variables (R1 ,f), (R2 ,c), and (R3 ,d) comprises the re-
duced system, in which the Hamiltonian is given by

H5aN222AN1
2 2R1

2cos~f!2hAN2
2 24R2

2cos~c!

2~N11R1!A1

2
N21R2 cosS d1f2

1

2
c D

2~N12R1!A1

2
N22R2 cosS d2f1

1

2
c D ,

~4.21!

whereN65N/46R3. The six dynamical equations may b
obtained as Hamilton equations, but these are far more c
plicated than Eqs.~4.1-4.2!, which is why we have used Eqs
~4.1-4.2! when integrating the dimer numerically. Howeve
the equations can throw some light on the structure of
problem, which may be useful for future research on
general system~2.3-2.4!.

V. DISCUSSION

In this work we have studied the generic model f
coupled quadratic nonlinear oscillators, each having two h
monic frequencies close to resonance. Being generic
model appears as the basic model in many areas of fu
mental physics and nonlinear science. Specific applicati
include waveguide arrays in quadratic nonlinear, so-ca
x (2) materials, and interface waves between two media cl
to Fermi resonance.

Large arrays of nonlinear waveguides are not relev
with the present technology. We have therefore studied
system with one and two coupled oscillators, the monom
and dimer, with special emphasis on the dimer, which
not yet been investigated in detail. In particular we ha
analytically found all stationary solutions, and determin
their stability and self-trapping properties. Furthermore,
have analyzed the Hamiltonian structure of the systems.

The stationary modes are an important subclass of s
tions for the characterization of a given system, and m
constitute the starting point for further analysis of the d
namical properties. The essential parameter for the dynam
is the phase-mismatch parametera. When uau is large the
second harmonic mode is weak, and slaved to the fundam
tal mode, whose dynamics then determines the dynamic
the whole system. In this limit the dominant fundamen
mode is described by the DST equation, which is the gen
model for coupled cubic nonlinear oscillators with only
single frequency. In nonlinear optics this is well known f
the corresponding continuum systems: Away from ph
matchingx (2) materials have effective cubic properties,
fact their nonintegrable dynamical equations reduce to
NLS equation, which is integrable in one dimension.

However, the discrete equations studied here are m
intriguing than their continuum counterpart in that their int
grability properties, and those of the effective equations
the large phase-mismatch limit, depend of the number
oscillators. For one oscillator both the original system a
the limiting DST system are integrable. In the more intere
ing case of two oscillators, thex (2) dimer is not integrable,
but reduces to the integrable DST dimer in the limit of
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7266 56BANG, CHRISTIANSEN, AND CLAUSEN
large phase mismatch. We have given the specific connec
between the stationary solutions of these two systems in
near-integrable limit. Five of the seven classes ofx (2) solu-
tions disappear, while the two remaining becomes the lo
ized ~self-trapped! and delocalized DST solutions.

Finally, we have used the approximate self-trapped so
tion obtained in the near-integrable DST limit as an init
condition in thex (2) dimer, and numerically shown how thi
solution gradually develops dynamics. For largeuau it is al-
most stationary, while the dynamics becomes more and m
chaotic asuau is decreased and we approach exact ph
se

e

rs

T

le
on
is

l-

-
l

re
e

matching. At a specific value ofa there is a transition, where
the solution goes from being primarily localized at one o
cillator to being delocalized.
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